Design and Fabrication of Android Operated Fire Fighting Vehicle

Course Title: Project and Thesis Course Code: ME 400

Submitted By:

Rason Chakma Md Shohanur Rahman Md Masud Rana Osman Gani

Faculty of Science & Engineering Department of Mechanical Engineering Sonargaon University (SU)

FEBRUARY 2020

Design and Fabrication of Android Operated Fire Fighting Vehicle

Project and Thesis

Rason Chakma ID No.: BME-1602009065 Md. Shohanur Rahman ID No.: BME-1602009036

Md. Masud Rana ID No.: BME-1602009071 **Osman Gani** ID No.: BME-1602009051

Supervised By:

Md. Mahedy Hasan Lecturer of Mechanical Engineering Sonargaon University.

Submitted To:

Faculty of Science & Engineering Department of Mechanical Engineering Sonargaon University .

In Partial Fulfillment of the Requirements for the Award of the Degree of Bachelor of Science in Mechanical Engineering

FEBRUARY 2020

Design and Fabrication of Android Operated Fire Fighting Vehicle

Project and Thesis By

Rason Chakma ID No.: BME-1602009065 Md. Shohanur Rahman ID No.: BME-1602009036

Md. Masud Rana ID No.: BME-1602009071 **Osman Gani** ID No.: BME-1602009051

Signature

Md. Mahedy Hasan Lecturer of Mechanical Engineering Sonargaon University.

Submitted to

Faculty of Science & Engineering Department of Mechanical Engineering Sonargaon University.

In Partial Fulfillment of the Requirements for the Award of the Degree of Bachelor of Science in Mechanical Engineering

FEBRUARY 2020

ACKNOWLEDGEMENT

The authors are grateful to almighty Allah for showing us the right path at the right moment, giving us the strength to complete the project and thesis successfully. Then the authors would like to express heartiest honor and thankful to **Md. Mahedy Hasan**, Lecturer, Department of Mechanical Engineering, for his continuous guidance, suggestions and motivation to complete this project and thesis. The authors would like to most thanks **Md. Mostofa Hossain**, Head, Department of Mechanical Engineering, Sonargaon University for giving all support and facilities to complete this project and thesis. Finally, the authors would like to thank those who helped us directly and indirectly by their different suggestions and motivation.

-THE AUTHORS

ABSTRACT

Automatic fire reorganization with smart security system is now a days used worldwide for better safety and security. In the recent year, Vehicles are turned out to be an ingredient over which many people had shown their interest. Vehicles has gained popularity due to the advancement of many technologies of computing and nano technologies. So, we proposed to design something that can make humans life easier and comfortable. This project, which is or endeavor design a fire fighting Vehicle. Comprises of a machine which not only has the basic features of the Vehicle, but also has the ability to extinguish it by command of operator. The need of the hour is make a device which can detect fire, even if it is small and take the necessary action to put it off. Many house hold item catch fire when someone is either sleeping or away and that lead many hazardous conditions in the fire is not putted off in time. So, be work as an mechanical engineer is to design and built system that can automatically detect fire. This advanced project allows a user to control a fire fighter Vehicle equipped with water tank and gun remotely wirelessly for extinguishing fires. For this purposes the system uses Bluetooth communication for remote operation along with Bluetooth based microcontroller Circuit for operating the Vehicle and water pump. The android based communication system transfer's user's commands through Bluetooth which are received by the receiver circuit. The receiver circuit now decodes the data commands sent. It then forwards to the microcontroller. Now the microcontroller processes these instruction and then instructions the motors to run the Vehicle in desired direction. It also operates the solenoid valve to spray water based on user's commands. This allows the user to operate the Vehicle and put off the fire by standing at a safe distance.

TABLE OF CONTENTS

ACKNOWLEDGEMENT.ivABSTRACTvTABLE OF CONTENTS.viLIST OF FIGURES.ixLIST OF TABLES.ix	COVER PAGE	i
TABLE OF CONTENTSviLIST OF FIGURESix	ACKNOWLEDGEMENT	iv
LIST OF FIGURES ix	ABSTRACT	v
	TABLE OF CONTENTS	vi
LIST OF TABLES ix	LIST OF FIGURES	ix
	LIST OF TABLES	ix

Chapter 1: Introduction

1. 1 Fire Fighting Vehicle	1
1.2 Objective	3
1.3 Working of Fire Fighting Vehicle Project	3

Chapter 2: LITERATURE REVIEW

2.1 Thermite RS1-T4 (1,250 GPM)	5
2.2 THERMITE RS3-T1	6
2.3 Vehicle firefighter Colossus	7
2.4. Fire Ox	8

Chapter 3: Theory & Methodology

3.1 Introduction	9
3.2 NodeMCU	10
3.3 Fire Sensor	11
3.4 Bluetooth Module	11
3.5 Motor driver	12
3.6 Pump	13
3.7 Gear motor	14
3.8 Port description of Easier Pro	15
3.9 Arduino	15
3.10 Arduino Nano	16
3.11 Programming on Arduino	17
3.12 Arduino Project 1: Blink an LED	20
3.13 Connect The Parts	21
3.14 Upload The Blink Sketch	21
3.15. Arduino Nano is better than Arduino Uno	23
3.16 What is Thunkable?	24
3.17 Overview of Thunkable	26

3.18 Block Diagram of Fire Plot Identification	27
3.19 Principle	27
3.20 Block Diagram of Fire Fighting Vehicle	28
3.21 Principle	29
3.22 Experimental Setup	29
3.23 Working procedure	30

Chapter 4: RESULT

4.1 RESULT	31
4.2 Photographic View	32

Chapter 5: CONCLUSION AND FUTURE WORK

CONCLUSION	33
FUTURE WORK	33
Appendix	34
References	36

LIST OF FIGURES

Figure 2-1: Thermite RS1-T4 (1,250 GPM) in application field	5
Figure 2-2: THERMITE RS3-T1 in application field	6
Figure 3-1: NodeMCU Pinout	10
Figure 3-2: Flame sensor	11
Figure 3-3 : Bluetooth module HC-05	12
Figure 3-4: Motor Driver	12
Figure 3-5: Mini pump	13
Figure 3-6: Gear Motor	14
Figure 3-7: Easier Pro Pinout	15
Figure 3-8: Arduino Nano	16
Figure 3-9: Opening Arduino IDE	17
Figure 3-10: Sketch of Arduino	18
Figure 3-11: Arduino Board Selection	19
Figure 3-12: Communication port selection	20
Figure 3-13: Experimental Setup	20
Figure 3-14: Scratch opening	21
Figure 3-15: Basic program of LED Blinking	22
Figure 3-16: Arduino uno & Arduino Nano	23
Figure 3-17: Main Dashboard of Thunkable app builder	25
Figure 3-18: Block programming in Thunkable	25
Figure 3-19: Live Test in Thunkable	26
Figure 3-20: Block Diagram of Fire Plot Identification System	27
Figure 3-21: Block Diagram of Fire Fighting Vehicle	28
Figure 3-22: Mother board	32
Figure 3-23: Vehicle Top View	32
Figure 3-24: Fire Sensor	32
Figure 3-25: Tank Feeder	32

LIST OF TABLES

Table 1-1: Distance Measurement with Following Angle	13
Table 1-2: Arduino Boards Comparison Chart	24