

“IoT Based Indoor Garden System”

A report submitted to the Department of EEE, Sonargaon University of Bangladesh in

partial fulfillment of the requirements for the Award of Degree of Bachelor of Science in

Electrical & Electronics Engineering.

Submitted by

 Md. Rasel ID: EEE1803014001

 Md. Palash Hosen ID: EEE1501004081

 Md. Liton Sha ID: EEE1701010145

 Md. Ekramul Islam

 Lutfor Rahman

ID: EEE1801013171

ID: EEE1603009098

 Zahanara Akter ID: EEE1802014080

Supervised by

Nurul Ambia Alaul (Lecturer)

Department of Electrical & Electronics Engineering

Sonargaon University (SU)

Dhaka-1215, Bangladesh

January, 2022

ii

Declaration

We declare that this project work entitled “IoT Based Indoor Garden System” is the

result of our own work as cited in the references. This project has not been accepted for

any degree and is not concurrently submitted in candidature for any other degree or

diploma elsewhere.

Md. Rasel

ID: EEE1802014001

Md. Ekramul Islam

ID: EEE1801013171

Md. Palash Hosen

ID: EEE1501004081

Lutfor Rahman

ID: EEE1603009098

Md. Liton Sha

ID: EEE1701010145

Zahanara Aktar

ID: EEE1802014080

I hereby declare that I have read the project report thoroughly. In my opinion, this project

is sufficient in terms of scope and quality to meet the partial requirements for the award of

the B.Sc. Engineering degree in EEE.

Supervised by,

Nurul Ambia Alaul

Lecturer Dept. of EEE, SU

iii

Approval

The Senior Project entitled “IoT Based Indoor Garden System” carried out by

Md. Rasel, ID: EEE1802014001,

Md. Palash Hosen, ID: EEE1501004081,

Md. Liton Sha, ID: EEE1701010145,

Md. Ekramul Islam, ID: EEE1801013171,

Lutfor Rahman, ID: EEE1603009098,

Zahanara Akter, ID: EEE1802014080

For fulfillment of the requirement for the award of B.Sc. Engineer Degree in ME was

presented to the audience of the Oral Exam Committee on 10/01/2022 and has been

accepted as satisfactory.

Prof.Dr.M Bashir Uddin

Professor & Department Head of EEE,SU

Nurul Ambia Alaul

Lecturer Dept. of EEE, SU

Md Ferdous Khan

Coordinator Dept. of EEE,SU

Md. Rais Uddin Mollah

Assistant Coordinator Dept. of EEE,SU

iv

Acknowledgement

Our utmost gratitude to Allah, the almighty, without his mercy and blessing this work

would not been possible. We are grateful to our supervisor Nurul Ambia Alaul, Lecturer,

Department of Electrical & Electronics Engineering, SU for his guidance, encouragement

many ways throughout his project work. We also appreciate his vision, experience, interest

and support for this project which came to us with greater help to write this paper.

We are also thankful to Teacher’s Name, Dept. of EEE, SU for his valuable suggestions.

We are also thankful to our classmates for their support and also who helped us to make

this project successful. Finally, we convey our heartily gratitude to our parents and family

members for their moral support.

v

Abstract

Technology brings a remarkable advancement in every field of life, whether it is industry

or agriculture. Our lives are essentially dependent on agricultural development.

Researchers are working to integrate modern technologies in agriculture to develop new

practices for the enhancement of healthy agriculture and production. Internet of things is a

domain of computer science that provides mechanisms and techniques to interconnect a

wide range of digital devices to automate the real-life systems. In big cities, peoples facing

problems in their homegrown gardens regarding the maintenance and availability of proper

gardeners. This research paper has proposed an IoT based approach for smart garden

monitoring using Node MCU microcontroller that helps the users in identifying current

parameters of temperature, moisture, and humidity of their homegrown plants and gardens.

A prototype has been implemented to show the real illustration of the proposed approach.

An android mobile application has been developed to display the real-time profiles of

environmental factors like temperature, moisture, and humidity. With the help of this

system, users will be able to treat their gardens in a better way in terms of plant health and

growth. All data will be stored in a data logger (Adafruit) system. Downloading data is

also possible. This research work replaces the need for gardeners and issues faced during

the maintenance of gardens in big cities. The purpose of this research is to introduce and

prosper the IoT innovation towards smart cities in our society.

vi

TABLE OF CONTENTS

TOPIC PAGE

Declaration ii

Approval iii

Acknowledgement

Abstract

Table of Content

iv

v

vi-viii

List of Figures ix-x

List of Tables xi

CHAPTER-1 INTRODUCTION 1-6

1.1 Background 1-2

1.2 Literature Review 2-3

1.3 Objective 3

1.4 Methodology

1.5 Advantage

1.6 Application

1.7 Limitations

1.9 Future Scope of Work

 4

4

5

5

5

1.10 Structure of the project 5-6

CHAPTER-2

HARDWARE ANALYSIS

7-25

2.1 Introduction 7

2.2 Switch Mood Power Supply 7-12

2.3 Soil Moisture Sensor 12-13

vii

2.4 Temperature Sensor

2.5 Node MCU

2.6 Mini Pump

2.7 BC547

2.8 Capacitor

2.9 Resistor

14

15-17

17-18

18-21

21-24

24-25

CHAPTER-3 SOFTWARE IMPLEMENTATION 26-39

3.1 Arduino Software 26-36

3.2 Proteus Software 37

3.3 Adafruit Server 38-39

CHAPTER-4

4.1 Block Diagram

4.2 Circuit Diagram

4.3 Working Principle

4.4 The project prototype

4.5 Cost Analysis

SYSTEM ARCHITECTURE 33-43

40

41

41-42

42

43

CHAPTER-5 DISCUSSION & CONCLUSION 44

5.1 Discussion 44

5.2 Conclusion 44

Reference

45

Appendix 47-53

viii

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

2.1 Switch Mood Power Supply 8

2.2 SMPS Circuit Diagram 11

2.3 Soil Moisture Sensor 13

2.4 DHT11 Temperature sensor 14

2.5 Node MCU 15

2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1

3.2

4.1

4.2

4.3

Node MCU Schematic Diagram

Node MCU Pin Out

Mini Water

Transistor

Transistor 2D Model

Capacitor Pin Out

Capacitor Operation

Arduino Software Interface IDE

Proteus Software Interface

Block Diagram

Circuit Diagram

Project Prototype

15

16

18

19

21

22

24

27

37

40

41

42

ix

List of Tables

Figure no Figure name Page no

01 Soil Moisture Sensor Pin Out 13

02 Transistor Pin Configuration 18

03 Cost of Components with Price 43

1

CHAPTER 1

INTRODUCTION

1.1 Background

In the current technological era, automation rules all over the world and holds the key to

radically empowering several sectors of Bangladesh economy. From manufacturing,

agriculture to services and logistics, technology can enhance the capacities, efficiencies,

and production quality of every human activity. Internet of things (IoT) is a technique of

using computers, mobile phones, or digital devices in monitoring and controlling the

simple parameters of day to day life . Using IoT concepts and knowledge, new systems

will be developed based upon sensors, software, and communication protocols for

automation of specific tasks. Data exchange is the key factor for IoT. The standards of our

lives will be nourished by the practice of using automation for simple things.

We are living in the fourth industrial revolution in which systems are moving from manual

to automatic process. It brings the concept of the smart industry and opens many research

direction. Those Peoples who prefer to grow gardens and other small fruit plants in their

homes often get cautious during the early stages of maintenance. As a result, the garden

gets destroyed due to a lack of care. There are also weather conditions that can render the

gardens lifetime short, as some crops/plants can die due to lack of moisture, severe heat,

and humidity, etc. People hire the gardeners to maintain their homegrown small gardens.

Most plants often get damaged due to environmental conditions and lack of proper care.

This is where the idea of an automated garden monitoring system takes place with the

internet of things to overcome above- mentioned problems. The proposed system integrates

all sensors and components for real-time statistics. Communication is done with wireless

sensor networks. Mobile computing is an efficient technology to support the internet of

things for developing real-life systems. Already, there are mobile applications that help

farmers in their crop maintenance. Similar IoT based systems are designed for garden

maintenance that is costly and often used one task, only temperature reading or water

pouring mechanism. Our country is based upon the agriculture sector, and it needs to

2

achieve higher benefits from other countries. A mobile application is developed to check

the status of the garden for watering. This system senses the temperature and moisture with

temperature and moisture sensors for big gardens. Soil and other supporting sensors are

integrated over Node MCU that gathers the values of soil and transfer the information to

firebase by using built-in WIFI facility. The temperature sensor, soil moisture and pump

controller are integrated to develop the prototype. The system senses the moisture and

humidity level of plants and provides water accordingly. All kind of this project data will

store in Adafruit server for help further check condition of land.

1.2 Literature Review

Many works have been done related to smart apps to monitor plant growth. Prathibha et.

al [1] used IoT to introduce smart farm monitoring program. This system consists of a

microcontroller, Wi-Fi unit, network processor. By using different sensors, it tracks crop

field condition. Besides that, this system monitors the soil temperature using a thermopile

sensor (TMP007).

Furthermore, this system uses HDC1010 as humidity sensor to track the relative moisture

of air within the farming field. This wireless monitoring of crop field is able to reduce

human power, and it allows users to see the real changes in crop yield. This system is also

can be applied to dependent plant which is located in the greenhouse.[2] Sehrish Munawar

Cheema et.al [3] proposed a recommendation system for plant irrigation using IoT based

digital solution for a home garden. This system obtains real data value from the sensors in

a way to make a recommendation for irrigation scheduling, and also which plants should

be grown. The microcontroller will get the data from a server and match the predefined

rules to generate the plant feasibility rating. Users receive notifications through the mobile

phone about the analysis, and this information is needed for them to schedule the time for

watering the plants.

Pavithra et al. [4] demonstrated their automated irrigation control system using the Global

System for Mobile Communication (GSM) module and microcontroller that connected

3

with Universal Asynchronous Receiver/Transmitter (UART). The system sets the time of

irrigation that depends on the temperature and humidity a sensor has obtained, as well as

the types of crops. The system can irrigate the field automatically without human presence.

[5] Some features in their system support water management decision which determines

the time control for monitoring the tank water level and provides the exact amount of water

required for plant and crop. Other than that, their system can check the temperature and

humidity of soil.

Beside that, other researchers conducted by Kansara et al. [6] stated about using GSM

module, sensor and microcontroller are connected using MAX232. This system uses

General Packet Radio Services (GPRS) feature of a mobile phone as for a solution to

control the irrigation system. The irrigation system sets as automated by using the

controllers where the valve will turn ON and OFF. This way will help to apply the right

amount of water and the right time that helps to improve crop performance by ensuring

adequate water. This system supports some features such as support water management

decision, monitors the water level in the tank and provide an accurate amount of water

required and checks the soil temperature and soil humidity of the plant. However, in this

project, small scale system has been developed where it helps the gardeners to monitor

their plants using mobile app.

1.3 Objective

The objective of this work is:

• Design & Construction of “IoT Based Indoor Garden system”

• Learn the Implementation of Indoor Garden Temperature Monitoring, garden water

condition in soil, sensing humidity, automatic pumping in garden System.

• Implementation of all data will record in a data logger system.

4

1.4 Methodology

Our used methodology for the project:

 Creating an idea for design and construction of “IoT Based Indoor Garden System”.

And designing a block diagram & circuit diagram to know which components we

need to construct it.

 Collecting all the components and programming the microcontroller to control the

system.

 Setting up all the components in a PCB board & then soldering. Then assembling

all the blocks in a board and finally running the system & checking.

1.5 Advantages

There are certainly many advantages of our project and some of the major ones have been

given below:

• All data will be found in a data logger (Adafruit).

• The project is compact, cheap and user friendly.

• The whole system consumes very little energy.

• Our system is fully automatic.

• The project is temperature sense, soil moisture sense and take immediate precaution

system.

• The system can be implemented anywhere with very little effort.

• Requires low maintenance.

• Without human interface the condition of garden and motor will be operate from

far way from garden.

5

1.6 Applications

Our project has many application areas and actually we need to use it in many places to

verified the soil situation, air moisture and it will be works from far way with a device.

Some of the application areas of the project has been pointed out below:

• The system can be implemented in indoor garden.

• It can be implemented in rooftop garden.

1.7 Limitations

We are thinking about adding many advantages to our project but this system has some

limitations. Some of the limitations are given below:

• There is no extra electricity back up in this project.

• IoT Signal may late cause it’s a demo project.

1.8 Future Scope of Work

We are thinking about adding many features to our project in the future to get more

desirable outcomes. Some of the steps that we are thinking about taking are given below:

• In future, we are thinking about adding camera monitoring features to the system.

• In future, we are thinking about adding backup power system to project so that can

run even when there’s no supply voltage available.

6

1.9 Structure of the Project

This project book consists of five chapter. The first chapter contains the statement of the

introduction, our background study for the project, objectives of the study in the project

and the project organization. Chapter two contains design of this project, block diagram

and circuit diagram, working principle. Chapter three describes the background and real

project, details of component and instrument details of the whole project. Chapter four

deals with the result and discussion and shows the complete prototype of the project that

we have built. In the final chapter, we discuss about future scope and conclusion of our

project.

7

CHAPTER 2

HARDWARE ANALYSIS

2.1 Introduction

This Project has worked on two things, Hardware and Software. In this Chapter we will

discuss about instrument specification, application and working procedure.

Software

 Proteus 8.9

 Arduino IDE

 Adafruit

Hardware

 SMPS

 Soil Moisture Sensor

 Temperature Sensor

 Node MCU

 Relay

 Mini Pump

 Fan

Hardware Description

8

2.2 Switch Mode Power Supply (SMPS)

A switched-mode power supply (switching-mode power supply, switch-mode power

supply, switched power supply, SMPS, or switcher) is an electronic power supply that

incorporates a switching regulator to convert electrical power efficiently Unlike a linear

power supply, the pass transistor of a switching-mode supply continually switches between

low-dissipation, full-on and full-off states, and spends very little time in the high

dissipation transitions, which minimizes wasted energy. A hypothetical ideal switched-

mode power supply dissipates no power. Voltage regulation is achieved by varying the

ratio of on-to-off time (also known as duty cycles). In contrast, a linear power supply

regulates the output voltage by continually dissipating power in the pass transistor. This

higher power conversion efficiency is an important advantage of a switched-mode power

supply.

Figure 2.1: Switch Mood Power Supply (SMPS)

Switching regulators are used as replacements for linear regulators when higher efficiency,

smaller size or lighter weight are required. They are, however, more complicated; their

switching currents can cause electrical noise problems if not carefully suppressed, and

simple designs may have a poor power factor. Switched-mode power supplies are classified

according to the type of input and output voltages. The four major categories are:

https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Voltage_regulator#Switching_regulators
https://en.wikipedia.org/wiki/Electrical_power_conversion
https://en.wikipedia.org/wiki/Linear_power_supply
https://en.wikipedia.org/wiki/Linear_power_supply
https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Voltage_regulator
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Transistor

9

 AC to DC

 DC to DC

 DC to AC

 AC to AC

9

A basic isolated AC to DC switched-mode power supply consists of:

 Input rectifier and filter

 Inverter consisting of switching devices such as MOSFETs

 Transformer

 Output rectifier and filter

 Feedback and control circuit

The input DC supply from a rectifier or battery is fed to the inverter where it is turned on

and off at high frequencies of between 20 KHz and 200 KHz by the switching MOSFET

or power transistors. The high-frequency voltage pulses from the inverter are fed to the

transformer primary winding, and the secondary AC output is rectified and smoothed to

produce the required DC voltages. A feedback circuit monitors the output voltage and

instructs the control circuit to adjust the duty cycle to maintain the output at the desired

level.

Basic working concept of an SMPS

A switching regulator does the regulation in the SMPS. A series switching element turns

the current supply to a smoothing capacitor on and off. The voltage on the capacitor

controls the time the series element is turned. The continuous switching of the capacitor

maintains the voltage at the required level.

Design basics

AC power first passes through fuses and a line filter. Then it is rectified by a full-wave

bridge rectifier. The rectified voltage is next applied to the power factor correction (PFC)

pre-regulator followed by the downstream DC-DC converter(s). Most computers and small

appliances use the International Electro technical Commission (IEC) style input connector.

As for output connectors and pin outs, except for some industries, such as PC and compact

PCI, in general, they are not standardized and are left up to the manufacturer.

10

There are different circuit configurations known as topologies, each having unique

characteristics, advantages and modes of operation, which determines how the input power

is transferred to the output. Most of the commonly used topologies such as fly back, push-

pull, half bridge and full bridge, consist of a transformer to provide isolation, voltage

scaling, and multiple output voltages. The non-isolated configurations do not have a

transformer and the power conversion is provided by the inductive energy transfer.

Advantages of switched-mode power supplies:

 Higher efficiency of 68% to 90%

 Regulated and reliable outputs regardless of variations in input supply voltage

 Small size and lighter

 Flexible technology

 High power density

Disadvantages:

 Generates electromagnetic interference

 Complex circuit design

 Expensive compared to linear supplies

Switched-mode power supplies are used to power a wide variety of equipment such as

computers, sensitive electronics, battery-operated devices and other equipment requiring

high efficiency.

11

Switch Mode Power Supply

Figure 2.2: SMPS Circuit Diagram

Linear voltage IC regulators have been the basis of power supply designs for many years

as they are very good at supplying a continuous fixed voltage output. Linear voltage

regulators are generally much more efficient and easier to use than equivalent voltage

regulator circuits made from discrete components such a Zener diode and a resistor, or

transistors and even op-amps.

The most popular linear and fixed output voltage regulator types are by far the positive

output voltage series, and the negative output voltage series. These two types of

complementary voltage regulators produce a precise and stable voltage output ranging from

about 5 volts up to about 24 volts for use in many electronic circuits. There is a wide range

of these three-terminal fixed voltage regulators available each with its own built-in voltage

regulation and current limiting circuits. This allows us to create a whole host of different

power supply rails and outputs, either single or dual supply, suitable for most electronic

circuits and applications. There are even variable voltage linear regulators available as well

providing an output voltage which is continually variable from just above zero to a few

volts below its maximum voltage output.

12

Most D.C power supplies comprise of a large and heavy step-down mains transformer,

diode rectification, either full-wave or half-wave, a filter circuit to remove any ripple

content from the rectified D.C producing a suitably smooth D.C voltage, and some form of

voltage regulator or stabilizer circuit, either linear or switching to ensure the correct

regulation of the power supplies output voltage under varying load conditions. Then a

typical D.C power supply would look something like this:

Typical DC Power Supply

These typical power supply designs contain a large mains transformer (which also provides

isolation between the input and output) and a dissipative series regulator circuit. The

regulator circuit could consist of a single zener diode or a three-terminal linear series

regulator to produce the required output voltage. The advantage of a linear regulator is that

the power supply circuit only needs an input capacitor, output capacitor and some feedback

resistors to set the output voltage.

2.3 Soil Moisture Sensor Module

This soil moisture sensor module is used to detect the moisture of the soil. It measures

the volumetric content of water inside the soil and gives us the moisture level as output.

The module has both digital and analog outputs and a potentiometer to adjust the threshold

level.

13

Table 01: Soil Moisture Sensor Pin Description

Pin Name Description

VCC

The VCC pin powers the module, typically with +5V

GND Power Supply Ground

DO Digital Out Pin for Digital Output.

AO Analog Out Pin for Analog Output

Moisture Sensor Module Features & Specifications

 Operating Voltage: 3.3V to 5V DC

 Operating Current: 15mA

 Output Digital - 0V to 5V, Adjustable trigger level from preset

 Output Analog - 0V to 5V based on infrared radiation from fire flame falling on

the sensor

 LEDs indicating output and power

 PCB Size: 3.2cm x 1.4cm

 LM393 based design

 Easy to use with Microcontrollers or even with normal Digital/Analog IC

 Small, cheap and easily available

 Figure 2.3: Soil Moisture Sensor

14

2.4 Temperature Sensor

The DHT11 is a basic, ultra-low-cost digital temperature and humidity sensor. It uses a

capacitive humidity sensor and a thermistor to measure the surrounding air, and spits out a

digital signal on the data pin (no analog input pins needed). It’s fairly simple to use, but

requires careful timing to grab data.

DHT11 Specifications:

 Operating Voltage: 3.5V to 5.5V

 Operating current: 0.3mA (measuring) 60uA (standby)

 Output: Serial data

 Temperature Range: 0°C to 50°C

 Humidity Range: 20% to 90%

 Resolution: Temperature and Humidity both are 16-bit

 Accuracy: ±1°C and ±1%

Figure 2.4: DHT11 Temperature Sensor

15

2.5 Node MCU

Node MCU is an open-source firmware for which open-source prototyping board designs are

available. The name "Node MCU" combines "node" and "MCU" (micro-controller unit). The

term "Node MCU" strictly speaking refers to the firmware rather than the associated

development kits. Both the firmware and prototyping board designs are open source. The

firmware uses the Lua scripting language.

Figure 2.5: Node MCU

The prototyping hardware typically used is a circuit board functioning as a dual in-line

package (DIP) which integrates a USB controller with a smaller surface-mounted board

containing the MCU and antenna. The choice of the DIP format allows for easy prototyping

on breadboards. The design was initially was based on the ESP-12 module of the ESP8266,

which is a Wi-Fi SoC integrated with a Tensilica Xtensa LX106 core, widely used in IoT

applications.

Figure 2.6: Node MCU Schematic Diagram

16

This an open source IoT platform. It includes firmware which runs on the ESP8266 Wi-

Fi SoC from Express if Systems, and hardware which is based on the ESP-12 module. The

term "Node MCU" by default refers to the firmware rather than the development kits. The

firmware uses the Luascripting language. It is based on the eLua project, and built on the

Espress if Non-OS SDK for ESP8266. Node MCU was created shortly after

the ESP8266 came out. On December 30, 2013, Espressif Systems began production of the

ESP8266. The ESP8266 is a Wi-Fi SoC integrated with a Tensilica Xtensa LX106 core,

widely used in IoT applications (see related projects). Node MCU started on 13 Oct 2014,

when Hong committed the first file of nodemcu-firmware to GitHub.

Figure 2.7: Node MCU Pin Out

Node MCU V3 ESP8266 ESP-12E is Wi-Fi development board that helps you to prototype

your IoT product with few Lua script lines, or through Arduino IDE. The board is based

on ESP8266 ESP-12E variant, unlike other ESP-12E, you won’t need to buy a separate

breakout board, USB to serial adapter, or even solder it to a PCB to get started, you will

only need a USB cable (Micro USB).

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/w/index.php?title=Espressif_Systems&action=edit&redlink=1
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/ESP8266
https://en.wikipedia.org/w/index.php?title=Espressif_Systems&action=edit&redlink=1
https://en.wikipedia.org/wiki/Tensilica
https://en.wikipedia.org/wiki/NodeMCU#Related_projects

17

Features

1. Communication interface voltage: 3.3V.

2. Antenna type: Built-in PCB antenna is available.

3. Wireless 802.11 b/g/n standard

4. Wi-Fi at 2.4GHz, support WPA / WPA2 security mode

5. Support STA/AP/STA + AP three operating modes

6. Built-in TCP/IP protocol stack to support multiple TCP Client connections (5

MAX)

7. D0 ~ D8, SD1 ~ SD3: used as GPIO, PWM, IIC, etc., port driver capability 15mA

8. AD0: 1 channel ADC

9. Power input: 4.5V ~ 9V (10VMAX), USB-powered

10. Current: continuous transmission: ≈70mA (200mA MAX), Standby: <200uA

11. Transfer rate: 110-460800bps

12. Support UART / GPIO data communication interface

13. Remote firmware upgrade (OTA)

14. Flash size: 4MByte.

2.6 Mini Pump:

DC 3-6V Mini Micro Submersible Water Pump for fountain, garden and controlled water

hydroponic systems.

Technical Specifications:

 DC Voltage: 2.5-6V

 Maximum lift: 40-110cm / 15.75″-43.4″

 Flow rate: 80-120L/H

 Outside diameter of water outlet: 7.5mm / 0.3″

 Inside diameter of water outlet: 5mm / 0.2″

 Diameter: Approx. 24mm / 0.95″

18

Figure 2.8: Mini Water Pump

 Length: Approx. 45mm / 1.8″

 Height: Approx. 30mm / 1.2″

 Material: engineering plastic

2.7 BC547 Transistor

Table 02: Transistor Pin Configuration

Pin

Number
Pin Name Description

1 Collector Current flows in through collector

2 Base Controls the biasing of transistor

3 Emitter Current Drains out through emitter

BC547 Transistor Features

 Bi-Polar NPN Transistor

 DC Current Gain (hFE) is 800 maximum

 Continuous Collector current (IC) is 100mA

 Emitter Base Voltage (VBE) is 6V

19

 Base Current(IB) is 5mA maximum

 Available in To-92 Package

Brief Description on BC547

Figure 2.9: Transistor Pin Out

BC547 is a NPN transistor hence the collector and emitter will be left open (Reverse

biased) when the base pin is held at ground and will be closed (Forward biased) when a

signal is provided to base pin. BC547 has a gain value of 110 to 800, this value determines

the amplification capacity of the transistor. The maximum amount of current that could

flow through the Collector pin is 100mA, hence we cannot connect loads that consume

more than 100mA using this transistor. To bias a transistor we have to supply current to

base pin, this current (IB) should be limited to 5mA.

When this transistor is fully biased then it can allow a maximum of 100mA to flow across

the collector and emitter. This stage is called Saturation Region and the typical voltage

allowed across the Collector-Emitter (VCE) or Base-Emitter (VBE) could be 200 and 900

mV respectively. When base current is removed the transistor becomes fully off, this stage

is called as the Cut-off Region and the Base Emitter voltage could be around 660 mV.

20

 BC547 as Switch

When a transistor is used as a switch it is operated in the Saturation and Cut-Off Region

as explained above. As discussed a transistor will act as an Open switch during Forward

Bias and as a Closed switch during Reverse Bias, this biasing can be achieved by supplying

the required amount of current to the base pin. As mentioned the biasing current should

maximum of 5mA. Anything more than 5mA will kill the Transistor; hence a resistor is

always added in series with base pin. The value of this resistor (RB) can be calculated using

below formulae.

RB = VBE / IB

Where, the value of VBE should be 5V for BC547 and the Base current (IB depends on the

Collector current (IC). The value of IB should not exceed mA.

 BC547 as Amplifier

A Transistors acts as an Amplifier when operating in Active Region. It can amplify

power, voltage and current at different configurations.

Some of the configurations used in amplifier circuits are

1. Common emitter amplifier

2. Common collector amplifier

3. Common base amplifier

Of the above types common emitter type is the popular and mostly used configuration.

When uses as an Amplifier the DC current gain of the Transistor can be calculated by using

the below formulae

DC Current Gain = Collector Current (IC) / Base Current (IB)

21

Applications

 Driver Modules like Relay Driver, LED driver etc..

 Amplifier modules like Audio amplifiers, signal Amplifier etc..

 Darlington pair

 2D model of the component

If you are designing a PCD or Perf board with this component then the following picture

from the Datasheet will be useful to know its package type and dimensions.

Figure 2,10: Transistor 2d Model

2.8 Capacitor

Capacitor is an electronic component that stores electric charge. The capacitor is made of

2 close conductors (usually plates) that are separated by a dielectric material. The plates

accumulate electric charge when connected to power source. One plate accumulates

positive charge and the other plate accumulates negative charge. The capacitance is the

amount of electric charge that is stored in the capacitor at voltage of 1 Volt. The capacitance

is measured in units of (F).The capacitor disconnects current in direct current (DC) circuits

and short circuit in alternating current (AC) circuits.

https://www.rapidtables.com/electric/electric_charge.html

22

Figure 2.11: Capacitor Pin Out

Pin Configuration

The Electrolytic Capacitors have polarity. Meaning they have a positive and negative pin.

The pin which is long is the positive pin and the pin which is short is the negative pin. You

can also identify the polarity using the negative strip on the capacitor label. As shown in

the picture above the negative pin will be directly under the negative symbol.

Features

 Capacitor Type - Electrolytic

 Has a high range of capacitance value starting from 0.01uF to 10000uF

 Has a high range of voltage value starting from 16V to 450V

 Can withstand a maximum of 105°C temperature

Other types of Capacitors

Ceramic Capacitor, Box Capacitor, Variable Capacitor.

23

Capacitor parameters selection

Ever wondered about the types of Electrolytic capacitors available in market and how to

select one for your project? Electrolytic Capacitors can be classified based on two main

parameters. One is their Capacitance(C-Farad) itself and the other is its Voltage (V-

Volts) rating.

Capacitor is a passive component which can store a charge (Q). This charge (Q) will be a

product of the value of capacitance (C) and the voltage (V) applied to it. The value of the

capacitance and Voltage of a capacitor will be mentioned on its label.

Hence the amount of charge a capacitor can be found using the value of Voltage (V) and

Capacitance (C) of the capacitor.

C = Q×V

Precaution

While using an Electrolytic capacitor care should always be taken to connect the positive

pin to the positive of the circuit and the negative pin to the negative of the circuit. Also the

voltage appearing across the capacitor terminals should always be less than the rated

capacitor voltage (V). Failing to do so will lead to abnormal heating of the capacitor and

might even burst.

Capacitor in series and parallel

In most of the circuits the value of the capacitance need not be exactly the same value

specified in the circuit. A higher value of capacitance will generally not affect the

performance of the circuit. However, the value of voltage should be the same or higher

than the specified value to prevent the risk mentioned in precaution above. In that case, if

you do not have the exact value you can use to capacitors in series or parallel to attain the

desired value.

24

When two capacitors are connected in parallel then, the value of the capacitance(C) gets

directly added up and the rated voltage (V) is remains the same in parallel as shown in the

picture below.

Figure 2.12: Capacitor Operation

2.9 Resistor

A resistor is a passive two-terminal electrical component that implements electrical

resistance as a circuit element. In electronic circuits, resistors are used to reduce current

flow, adjust signal levels, to divide voltages, bias active elements, and terminate

transmission lines, among other uses. High-power resistors that can dissipate many watts

of electrical power as heat, may be used as part of motor controls, in power distribution

systems, or as test loads for generators. Fixed resistors have resistances that only change

slightly with temperature, time or operating voltage. Variable resistors can be used to adjust

circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for

heat, light, humidity, force, or chemical activity.

Two typical schematic diagram symbols are as follows:

https://en.wikipedia.org/wiki/Passivity_(engineering)
https://en.wikipedia.org/wiki/Terminal_(electronics)
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Biasing
https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Watt
https://en.wikipedia.org/wiki/Electric_generator
https://en.wikipedia.org/wiki/Schematic_diagram
https://en.wikipedia.org/wiki/File:Resistor,_Rheostat_(variable_resistor),_and_Potentiometer_symbols.svg

25

(a) resistor, (b) rheostat (variable resistor), and (c) potentiometer

IEC resistor symbol

The notation to state a resistor's value in a circuit diagram varies.

One common scheme is the RKM code following IEC 60062. It avoids using a decimal

separator and replaces the decimal separator with a letter loosely associated with SI

prefixes corresponding with the part's resistance. For example, 8K2 as part marking code,

in a circuit diagram or in a bill of materials (BOM) indicates a resistor value of 8.2 kΩ.

Additional zeros imply a tighter tolerance, for example 15M0 for three significant digits.

When the value can be expressed without the need for a prefix (that is, multiplicator 1), an

"R" is used instead of the decimal separator. For example, 1R2 indicates 1.2 Ω, and 18R

indicates 18 Ω.

Specifications:

 Resistance: 220 Ohms

 Power (Watts): 0.25W, 1/4W

 Temperature Coefficient: 350ppm/Celcius

 Tolerance: +/- 5%

 Case: Axial

 Size: 0.094" Dia x 0.248" L (2.40mm x 6.30mm)

https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/RKM_code
https://en.wikipedia.org/wiki/IEC_60062
https://en.wikipedia.org/wiki/Decimal_separator
https://en.wikipedia.org/wiki/Decimal_separator
https://en.wikipedia.org/w/index.php?title=Marking_code&action=edit&redlink=1
https://en.wikipedia.org/wiki/Circuit_diagram
https://en.wikipedia.org/wiki/Bill_of_materials
https://en.wikipedia.org/wiki/File:Resistor_symbol_IEC.svg

26

CHAPTER 3

SOFTWARE IMPLEMENTATION

3.1 Arduino Software

The digital microcontroller unit named as Arduino Nano can be programmed with the

Arduino software IDE. There is no any requirement for installing other software rather than

Arduino. Firstly, Select "Arduino Nano from the Tools, Board menu (according to the

microcontroller on our board). The IC used named as ATmega328 on the Arduino Nano

comes pre burned with a boot loader that allows us to upload new code to it without the

use of an external hardware programmer.

Communication is using the original STK500 protocol (reference, C header files). We can

also bypass the boot loader and programs the microcontroller through the ICSP (In Circuit

Serial Programming) header. The ATmega16U2 (or 8U2 in the rev1 and rev2 boards)

firmware source code is available. The ATmega16U2/8U2 is loaded with a DFU boot

loader, which can be activated by:

On Rev1 boards: connecting the solder jumper on the back of the board (near the map of

Italy) and then resetting the 8U2. On Rev2 or later boards: there is a resistor that pulling

the 8U2/16U2 HWB line to ground, making it easier to put into DFU mode.

The Arduino Nano is one of the latest digital microcontroller units and has a number of

facilities for communicating with a computer, another Arduino, or other microcontrollers.

The ATmega328 provides UART TTL at (5V) with serial communication, which is

available on digital pins 0 -(RX) for receive the data and pin no.1 (TX) for transmit the

27

data. An ATmega16U2 on the board channels this serial communication over USB and

appears as a virtual com port to software on the computer. The '16U2 firmware uses the

standard USB COM drivers, and no external driver is needed. However, on Windows, an

.in file is required. The Arduino software includes a serial monitor which allows simple

textual data to be sent to and from the Arduino board.

The RX and TX LEDs on the board will flash when data is being transmitted via the USB-

to-serial chip and USB connection to the computer (but not for serial Communication on

pins 0 and 1). A Software Serial library allows for serial communication on any of the

Nano's digital pins. The ATmega328 also supports I2C (TWI) and SPI communication.

The Arduino software includes a Wire library to simplify use of the I2C bus. Arduino

programs are written in C or C++ and the program code written for Arduino is called

sketch. The Arduino IDE uses the GNU tool chain and AVR Lab to compile programs, and

for uploading the programs it uses argued. As the Arduino platform uses Atmel

microcontrollers, Atmel's development environment, AVR Studio or the newer Atmel

Studio, may also be used to develop software for the Arduino.

Figure 3.1: Arduino Software Interface IDE

The Arduino Integrated Development Environment - or Arduino Software (IDE) - contains

a text editor for writing code, a message area, a text console, a toolbar with buttons for

common functions and a series of menus. It connects to the Arduino and Genuino hardware

28

to upload programs and communicate with them.

Writing Sketches

Programs written using Arduino Software (IDE) are called sketches. These sketches are

written in the text editor and are saved with the file extension .ino. The editor has features

for cutting/pasting and for searching/replacing text. The message area gives feedback while

saving and exporting and also displays errors. The console displays text output by the

Arduino Software (IDE), including complete error messages and other information. The

bottom right hand corner of the window displays the configured board and serial port. The

toolbar buttons allow you to verify and upload programs, create, open, and save sketches,

and open the serial monitor.

NB: Versions of the Arduino Software (IDE) prior to 1.0 saved sketches with the extension

.pde. It is possible to open these files with version 1.0, you will be prompted to save the

sketch with the .ino extension on save.

Verify

Checks your code for errors compiling it.

Upload

Compiles your code and uploads it to the configured board. See uploading below for

details.

Note: If you are using an external programmer with your board, you can hold down the

"shift" key on your computer when using this icon. The text will change to "Upload using

Programmer"

New

Creates a new sketch.

29

Open

Presents a menu of all the sketches in your sketchbook. Clicking one will open it within

the current window overwriting its content.

Note: due to a bug in Java, this menu doesn't scroll; if you need to open a sketch late in the

list, use the File | Sketchbook menu instead.

Save

Saves your sketch.

Serial Monitor

Opens the serial monitor.

Additional commands are found within the five menus: File, Edit, Sketch, Tools, Help. The

menus are context sensitive, which means only those items relevant to the work currently

being carried out are available.

File

New

Creates a new instance of the editor, with the bare minimum structure of a sketch already

in place.

Open

Allows to load a sketch file browsing through the computer drives and folders.

Open Recent

Provides a short list of the most recent sketches, ready to be opened.

Sketchbook

30

Shows the current sketches within the sketchbook folder structure; clicking on any name

opens the corresponding sketch in a new editor instance.

Examples

Any example provided by the Arduino Software (IDE) or library shows up in this menu

item. All the examples are structured in a tree that allows easy access by topic or library.

Close

Closes the instance of the Arduino Software from which it is clicked.

Save

Saves the sketch with the current name. If the file hasn't been named before, a name will

be provided in a "Save as.." window.

Save as...

Allows to save the current sketch with a different name.

Page Setup

It shows the Page Setup window for printing.

Print

Sends the current sketch to the printer according to the settings defined in Page Setup.

Preferences

Opens the Preferences window where some settings of the IDE may be customized, as the

language of the IDE interface.

Quit

Closes all IDE windows. The same sketches open when Quit was chosen will be

automatically reopened the next time you start the IDE.

Edit

Undo/Redo

31

Goes back of one or more steps you did while editing; when you go back, you may go

forward with Redo.

Cut

Removes the selected text from the editor and places it into the clipboard.

Copy

Duplicates the selected text in the editor and places it into the clipboard.

Copy for Forum

Copies the code of your sketch to the clipboard in a form suitable for posting to the forum,

complete with syntax coloring.

Copy as HTML

Copies the code of your sketch to the clipboard as HTML, suitable for embedding in web

pages.

Paste

Puts the contents of the clipboard at the cursor position, in the editor.

Select All

Selects and highlights the whole content of the editor.

Comment/Uncomment

Puts or removes the // comment marker at the beginning of each selected line.

Increase/Decrease Indent

Adds or subtracts a space at the beginning of each selected line, moving the text one space

on the right or eliminating a space at the beginning.

Find

Opens the Find and Replace window where you can specify text to search inside the current

32

sketch according to several options.

Find Next

Highlights the next occurrence - if any - of the string specified as the search item in the

Find window, relative to the cursor position.

Find Previous

Highlights the previous occurrence - if any - of the string specified as the search item in

the Find window relative to the cursor position.

Sketch

Verify/Compile

Checks your sketch for errors compiling it; it will report memory usage for code and

variables in the console area.

Upload

Compiles and loads the binary file onto the configured board through the configured Port.

Upload Using Programmer

This will overwrite the bootloader on the board; you will need to use Tools > Burn

Bootloader to restore it and be able to Upload to USB serial port again. However, it allows

you to use the full capacity of the Flash memory for your sketch. Please note that this

command will NOT burn the fuses. To do so a Tools -> Burn Bootloader command must

be executed.

Export Compiled Binary

Saves a .hex file that may be kept as archive or sent to the board using other tools.

Show Sketch Folder

Opens the current sketch folder.

33

Include Library

Adds a library to your sketch by inserting #include statements at the start of your code. For

more details, see libraries below. Additionally, from this menu item you can access the

Library Manager and import new libraries from .zip files.

Add File...

Adds a source file to the sketch (it will be copied from its current location). The new file

appears in a new tab in the sketch window. Files can be removed from the sketch using the

tab menu accessible clicking on the small triangle icon below the serial monitor one on the

right side o the toolbar.

Tools

Auto Format

This formats your code nicely: i.e. indents it so that opening and closing curly braces line

up, and that the statements inside curly braces are indented more.

Archive Sketch

Archives a copy of the current sketch in .zip format. The archive is placed in the same

directory as the sketch.

Fix Encoding & Reload

Fixes possible discrepancies between the editor char map encoding and other operating

systems char maps.

Serial Monitor

Opens the serial monitor window and initiates the exchange of data with any connected

board on the currently selected Port. This usually resets the board, if the board supports

Reset over serial port opening.

Board

34

Select the board that you're using. See below for descriptions of the various boards.

Port

This menu contains all the serial devices (real or virtual) on your machine. It should

automatically refresh every time you open the top-level tools menu.

Programmer

For selecting a hardware programmer when programming a board or chip and not using

the onboard USB-serial connection. Normally you won't need this, but if you're burning a

boot loader to a new microcontroller, you will use this.

Burn Boot loader

The items in this menu allow you to burn a boot loader onto the microcontroller on an

Arduino board. This is not required for normal use of an Arduino or Genuino board but is

useful if you purchase a new ATmega microcontroller (which normally come without a

bootloader). Ensure that you've selected the correct board from the Boards menu before

burning the bootloader on the target board. This command also set the right fuses.

Help

Here you find easy access to a number of documents that come with the Arduino Software

(IDE). You have access to Getting Started, Reference, this guide to the IDE and other

documents locally, without an internet connection. The documents are a local copy of the

online ones and may link back to our online website.

Find in Reference

This is the only interactive function of the Help menu: it directly selects the relevant page

in the local copy of the Reference for the function or command under the cursor.

Sketchbook

The Arduino Software (IDE) uses the concept of a sketchbook: a standard place to store

35

your programs (or sketches). The sketches in your sketchbook can be opened from the File

> Sketchbook menu or from the Open button on the toolbar. The first time you run the

Arduino software, it will automatically create a directory for your sketchbook. You can

view or change the location of the sketchbook location from with the Preferences dialog.

Beginning with version 1.0, files are saved with a .ino file extension. Previous versions use

the .pde extension. You may still open .pde named files in version 1.0 and later, the

software will automatically rename the extension to .ino.

Tabs, Multiple Files, and Compilation

Allows you to manage sketches with more than one file (each of which appears in its own

tab). These can be normal Arduino code files (no visible extension), C files (.c extension),

C++ files (.cpp), or header files (.h).

Uploading

Before uploading your sketch, you need to select the correct items from the Tools > Board

and Tools > Port menus. The boards are described below. On the Mac, the serial port is

probably something like /dev/tty.usbmodem241 (for an Uno or Mega2560 or Leonardo) or

/dev/tty.usbserial-1B1 (for a Duemilanove or earlier USB board), or

/dev/tty.USA19QW1b1P1.1 (for a serial board connected with a Keyspan USB-to-Serial

adapter). On Windows, it's probably COM1 or COM2 (for a serial board) or COM4,

COM5, COM7, or higher (for a USB board) - to find out, you look for USB serial device

in the ports section of the Windows Device Manager. On Linux, it should be /dev/ttyACMx

, /dev/ttyUSBx or similar. Once you've selected the correct serial port and board, press the

upload button in the toolbar or select the Upload item from the Sketch menu. Current

Arduino boards will reset automatically and begin the upload. With older boards (pre-

Diecimila) that lack auto-reset, you'll need to press the reset button on the board just before

starting the upload. On most boards, you'll see the RX and TX LEDs blink as the sketch is

uploaded. The Arduino Software (IDE) will display a message when the upload is

complete, or show an error.

When you upload a sketch, you're using the Arduino bootloader, a small program that has

been loaded on to the microcontroller on your board. It allows you to upload code without

36

using any additional hardware. The bootloader is active for a few seconds when the board

resets; then it starts whichever sketch was most recently uploaded to the microcontroller.

The bootloader will blink the on-board (pin 13) LED when it starts (i.e. when the board

resets).

Libraries

Libraries provide extra functionality for use in sketches, e.g. working with hardware or

manipulating data. To use a library in a sketch, select it from the Sketch > Import Library

menu. This will insert one or more #include statements at the top of the sketch and compile

the library with your sketch. Because libraries are uploaded to the board with your sketch,

they increase the amount of space it takes up. If a sketch no longer needs a library, simply

delete its #include statements from the top of your code.

There is a list of libraries in the reference. Some libraries are included with the Arduino

software. Others can be downloaded from a variety of sources or through the Library

Manager. Starting with version 1.0.5 of the IDE, you do can import a library from a zip file

and use it in an open sketch. See these instructions for installing a third-party library.

Third-Party Hardware

Support for third-party hardware can be added to the hardware directory of your

sketchbook directory. Platforms installed there may include board definitions (which

appear in the board menu), core libraries, bootloaders, and programmer definitions. To

install, create the hardware directory, then unzip the third-party platform into its own sub-

directory. (Don't use "arduino" as the sub-directory name or you'll override the built-in

Arduino platform.) To uninstall, simply delete its directory.

For details on creating packages for third-party hardware, see the Arduino IDE 1.5 3rd

party Hardware specification.

Serial Monitor

37

This displays serial sent from the Arduino or Genuino board over USB or serial connector.

To send data to the board, enter text and click on the "send" button or press enter. Choose

the baud rate from the drop-down menu that matches the rate passed to Serial.begin in your

sketch. Note that on Windows, Mac or Linux the board will reset (it will rerun your sketch)

when you connect with the serial monitor. Please note that the Serial Monitor does not

process control characters; if your sketch needs a complete management of the serial

communication with control characters, you can use an external terminal program and

connect it to the COM port assigned to your Arduino board.

You can also talk to the board from Processing, Flash, MaxMSP, etc (see the interfacing

page for details).

3.2 Proteus Software

The Proteus Design Suite is a proprietary software tool suite used primarily for electronic

design automation. The software is used mainly by electronics design engineers and

technicians to create schematics and electronics prints for manufacturing printed circuit

boards.

The first version of what is now the Proteus Design Suite was called PC-B and was written

by the company chairman, John Jameson, for DOS in 1988. Schematic Capture support

followed in 1990 with a port to the Windows environment shortly thereafter. Mixed mode

SPICE Simulation was first integrated into Proteus in 1996 and microcontroller simulation

then arrived in Proteus in 1998. Shape based auto routing was added in 2002 and 2006 saw

another major product update with 3D Board Visualization. More recently, a dedicated IDE

for simulation was added in 2011 and MCAD import/export was included in 2015. Support

for high speed design was added in 2017. Feature led product releases are typically

38

biannual, while maintenance based service packs are released as required.

Figure 3.2: Our Project Design in Proteus Software

3.3 Adafruit Server:

Adafruit IO is a system that makes data useful. Our focus is on ease of use, and allowing

simple data connections with little programming required. On an Arduino there are two

different libraries you can use to access Adafruit IO. One library is based on the REST

API, and the other library is based on the MQTT API. The difference between these

libraries is that MQTT keeps a connection to the service open so it can quickly respond to

feed changes. The REST API only connects to the service when a request is made so it's a

more appropriate choice for projects that sleep for a period of time (to reduce power usage)

and wake up only to send/receive data. If you aren't sure which library to use, try starting

with the Adafruit MQTT library below.

39

Adafruit MQTT Client Library To use Adafruit IO with the MQTT protocol on an Arduino

you can use the Adafruit MQTT Arduino library (https://adafru.it/fp6). This is a general-

purpose MQTT library for Arduino that's built to use as few resources as possible so that

it can work with platforms like the Arduino Uno. Unfortunately, platforms like the Trinket

3.3V or 5V (based on the ATtiny85) have too little program memory to use the library--

stick with a Pro Trinket or better.

Adafruit IO

Having a better understanding about the Internet of Things and Cloud computing, let’s now

go over what Adafruit IO is about, and how it works. With the rise in digital

transformations, IoT deployments in the cloud have become more popular. By deploying

IoT solutions on the cloud, we have the following benefits:

 Cost - Reduces the cost of computing and storage by using various cloud services.

 Scalability - The “pay-as-you-go” pricing model allows a flexible pay model, also

allowing scalability of the application.

 Data control - Data backup and recovery with high security.

 Server uptime - Allows very minimum or no downtime, with high server

availability.

Adafruit IO is one such cloud provider focusing more on IoT deployments on the cloud.

Adafruit IO supports different hardware like Raspberry PI, ESP2866, and Arduino. IoT

developers prefer Adafruit IO over other IoT cloud providers for the following reasons:

 Powerful API - Provides us libraries for various programming languages, which

also provides the built-in user interface support.

 Dashboard - Understanding data via charts and graphs enables us to make better

decisions.

 Privacy - Data is secured in the cloud platform with better encryption algorithms.

 Documentation & Community - Many blogs with amazing community support

allows continuous developments of the products.

https://io.adafruit.com/

40

Objective

we worked with NodeMCU on blinking lights of built-in LEDs. In this article, to

demonstrate Adafruit IO works, we will send (publish) the LED brightness readings to the

Adafruit IO cloud via Arduino IDE (written in C), and receive (subscribe) them via a

Python server.

Installation

Follow the installation guide to get setup:

 Sign up by creating a new account in Adafruit IO.

 Make note of your private key by heading over to the “My Key” section.

 Then, “Create a new dashboard” with the desired name.

 In local setup, install a Python package called Adafruit_IO using pip install

Adafruit_IO.

 Similarly, make sure to go through the previous article on how to set up the existing

development environment.

https://io.adafruit.com/

41

CHAPTER 4

SYSTEM ARCHITECTURE

4.1 Block Diagram

In this project, we have used a SMPS which has a Transformer to step down the input ac

supply to get our desired value and then using the rectifier circuit and filter inside we get a

dc output. Then the regulator IC has been used to output a regulated 5V so that we can use

it to run the Node MCU.

Figure 4.1: Block Diagram of IoT Based Indoor Garden System

42

4.2 Circuit Diagram

The schematic diagram here is representing the electrical circuit and the components of the project.

Here we have used standardized symbols and lines.

Figure 4.2: Circuit Diagram of IoT Based Indoor Garden System.

43

4.3 Working Principle

This is IoT Based Indoor Garden System. The main brain of our system is the Node MCU.

The way of whole project works is that we take 220V (rms) ac power from the supply

voltage and then feed it to a Switch Mode Power Supply or in short SMPS module. The

SMPS simply converts the 220V ac to a pure dc of 5V. We will use this 5V dc output from

the SMPS to run our Node MCU, Sensor and other units.

A soil moisture sensor is use here for measure the moisture of soil in garden, DHT11 is a

Temperature sensor, it measure the indoor garden temperature. On the other hand, for

measuring temperature these sensors use a NTC temperature sensor or a thermistor. A

thermistor is actually a variable resistor that changes its resistance with change of the

temperature. Here also used relay and many other things. This projects is mainly works to

detect temperature, when temperature will extend a limit then fan will be On and start

cooling inside of the garden. And soil moisture sensor senses the soil moisture. If there

moisture is low, then relay will on and start the pump motor automatically. After pumping

when soil will over moisture it will stop sensor by send a signal in Node MCU. And User

is also sensing this reading in phone by the use of Adafruit server. To communicate over

Adafruit server it’s the function of sending message over the IoT. All information will save

in a data logger system. We will download from this server anytime when we want.

44

4.4 The Project Prototype

The complete prototype of our project is shown below:

Figure 4.3: The Complete Prototype of the Project

4.5 Cost Analysis

In the below table we have summarized our project expenditure.

Table 3: Cost of Components with Price

No. Product Name Specification Qty.

Price

Unit

Price

(Taka)

Total Price

(Taka)

01 SMPS 5V 5Amp 1 450 450

02 Soil Moisture

Sensor

 1 230 230

45

03 Temperature

Sensor

DHT11 1 180 180

04 Node MCU ESP8266 1 550 550

05 Transistor 2 50 100

06 Mini pump 1 350 350

07 Fan 12V 1 150 300

08 Others 1500

 Total = 3,660/=

CHAPTER 5

DISCUSSION & CONCLUSION

5.1 Discussion

In this project we collect all of the instruments, make a circuit design and connect all of

these elements sequentially. IoT based Indoor Garden is made for the automation gardening

purpose, which is mainly used in automatic daily life. This project has some advantages,

that are it’s a ecofriendly project, low management cost, installation cost is low. Anywhere

you can install by little effort. It's mainly needed for city gardens where men are so busy

with their work. In this situation nursing a garden is so tough. It's a huge change in our

daily life.

46

5.2 Conclusion

In this proposed smart irrigation system, an automatic mode of operation is designed for

watering purposes. With this type of device, no extra assistance is needed. It works

perfectly in the absence of the owner by detecting the soil condition through a moisture

sensor and according to the condition of the soil, the Node MCU runs the irrigation system.

It also notifies its user about the current status of both soil and motor. This method of

watering the soil is very helpful for farmers especially in the rural areas because of its

reasonable cost. To test the performance of the irrigation system in a garden, both dry and

wet soils are arranged. This proposed system works as per expectation level by providing

maximum automation without wasting any water. It is also tested that; the system is able

to run the water pump without the sunlight for a few hours with the stored energy in the

batteries. Before starting the operation, the moisture sensor needs to be checked,

temperature sensor needs to be check for start the fan and all information are stored in a

data logger (Adafruit) system.

Reference

[1] Usama Abdullah, Ayesha Ali (2014). GSM Based Water level and Temperature

Monitoring System. International Journal of Recent Development in Engineering and

Technology. Volume 3, Issue 2, August 2014.

[2] Asaad Ahmed Mohammed ahmed Eltaieb, Zhang Jian Min, “Automatic Water Level

Control System”, International Journal of Science and Research (IJSR)2013

[3] Nivit Yadav, “CPCB Real Time Water Quality Monitoring", port: Centre for Science

and Environment,2013.

[4] B. K. Bose, “Global warming: energy, environmental pollution, and the impact of

power electronics,” IEEE Ind. Electron. Mag., vol. 4, no. 1, pp. 6–17, Mar. 2010.

47

[5] K. Ahmed, J. Paul, M. M. Rahman, A. Shufian, M. S. Tanvir, and M. M. I. Sagor,

“Automatically controlled energy conservation system for corporate office based on

microcontroller,” IEEE Int. Conf. Adv. Sci., Eng. Robot. Technol., Dhaka,

Bangladesh, May 3–5, 2019, in press.

[6] A. Shufian, M. M. Rahman, K. Ahmed, R. Islam, M. Hasan, and T. Islam, “Design

and implementation of solar power wireless battery charger,” IEEE Int. Conf. Adv.

Sci., Eng. Robot. Technol., Dhaka, Bangladesh, May 3–5, 2019, in press.

[7] M. R. Habib, K. Ahmed, N. Khan, M. R. Kiran, M. A. Habib, M. T. Hasan, and O.

Farrok, “PID controller based automatic solar powerdriven grass cutting machine,”

IEEE Int. Conf. Comput., Commun., Chemical, Mater. Electron. Eng., Rajshahi,

Bangladesh, Jul. 11–12, 2019, in press.

[8] Website: https://www.toppr.com/guides/biology/crop-production and management

/irrigation/. [Accessed: 27-Jul-2019].

[9] M. Monica, B. Yeshika, G. S. Abhishek, H. A. Sanjay, and S. Dasiga, “IoT based

control and automation of smart irrigation system,” IEEE Int. Conf. Recent

Innovations Signal Process. Embedded Syst., Bhopal, India, Oct. 27–29, 2017, pp.

601–607.

[1] Usama Abdullah, Ayesha Ali (2014). GSM Based Water level and Temperature

Monitoring System. International Journal of Recent Development in Engineering and

Technology. Volume 3, Issue 2, August 2014.

48

 Appendix

#include <ESP8266WiFi.h>

#include "Adafruit_MQTT.h"

#include "Adafruit_MQTT_Client.h"

#include "DHT.h"

// DHT 11 sensor

#define DHTPIN D5

#define moisture D7

#define motor D8

#define ldr D1

#define light D2

#define fan D6

#define DHTTYPE DHT11

// WiFi parameters

#define WLAN_SSID "Rasel."

#define WLAN_PASS "123456789"

// Adafruit IO

#define AIO_SERVER "io.adafruit.com"

#define AIO_SERVERPORT 1883

#define AIO_USERNAME "kibrea"

#define AIO_KEY "aio_VgYy968mQ9zYFgWrahxB5VPm2rAo"

// DHT sensor

49

DHT dht(DHTPIN, DHTTYPE, 11);

// Create an ESP8266 WiFiClient class to connect to the MQTT server.

WiFiClient client;

// Setup the MQTT client class by passing in the WiFi client and MQTT server and login

details.

Adafruit_MQTT_Client mqtt(&client, AIO_SERVER, AIO_SERVERPORT,

AIO_USERNAME, AIO_KEY);

// Setup feeds for temperature & humidity

Adafruit_MQTT_Publish temperature = Adafruit_MQTT_Publish(&mqtt,

AIO_USERNAME "/feeds/temperature");

Adafruit_MQTT_Publish humidity = Adafruit_MQTT_Publish(&mqtt,

AIO_USERNAME "/feeds/humidity");

Adafruit_MQTT_Publish Motoronoff = Adafruit_MQTT_Publish(&mqtt,

AIO_USERNAME "/feeds/Motoronoff");

Adafruit_MQTT_Publish lightonoff = Adafruit_MQTT_Publish(&mqtt,

AIO_USERNAME "/feeds/lightonoff");

/*************************** Sketch Code

************************************/

void setup() {

 // Init sensor

 dht.begin();

pinMode(D7,INPUT);

pinMode(D8,OUTPUT);

pinMode(D1,INPUT);

pinMode(D2,OUTPUT);

50

pinMode(D6,OUTPUT);

 Serial.begin(115200);

 Serial.println(F("Adafruit IO Example"));

 // Connect to WiFi access point.

 Serial.println(); Serial.println();

 delay(10);

 Serial.print(F("Connecting to "));

 Serial.println(WLAN_SSID);

 WiFi.begin(WLAN_SSID, WLAN_PASS);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(F("."));

 }

 Serial.println();

 Serial.println(F("WiFi connected"));

 Serial.println(F("IP address: "));

 Serial.println(WiFi.localIP());

 // connect to adafruit io

 connect();

}

void loop() {

51

 // ping adafruit io a few times to make sure we remain connected

 if(! mqtt.ping(3)) {

 // reconnect to adafruit io

 if(! mqtt.connected())

 connect();

 }

 // Grab the current state of the sensor

 int humidity_data = (int)dht.readHumidity();

 int temperature_data = (int)dht.readTemperature();

 int moisture_sensor = digitalRead(moisture);

 int ldr_sensor = digitalRead(ldr);

 Serial.print(humidity_data);

 int temperature_data1 = temperature_data;

 Serial.println(temperature_data1);

 if (temperature_data1 >34){

 digitalWrite(fan,HIGH);

 }

 if (temperature_data1 <34){

 digitalWrite(fan,LOW);

 }

 if (! temperature.publish(temperature_data1))

 Serial.println(F("Failed to publish temperature"));

 else

52

 Serial.println(F("Temperature published!"));

 if (! humidity.publish(humidity_data))

 Serial.println(F("Failed to publish humidity"));

 else

 Serial.println(F("Humidity published!"));

if(moisture_sensor==HIGH){

 digitalWrite(motor,HIGH);

}

if(moisture_sensor==LOW){

 digitalWrite(motor,LOW);

}

 if (! Motoronoff.publish(moisture_sensor)) {

 Serial.println(F("Failed"));

 } else {

 Serial.println(F("OK!"));

 }

if(ldr_sensor==HIGH){

 digitalWrite(light,HIGH);

}

if(ldr_sensor==LOW){

 digitalWrite(light,LOW);

}

if (! lightonoff.publish(ldr_sensor)) {

 Serial.println(F("Failed"));

53

 } else {

 Serial.println(F("OK!"));

 }

 // Repeat every 10 seconds

 delay(10000);

}

// connect to adafruit io via MQTT

void connect() {

 Serial.print(F("Connecting to Adafruit IO... "));

 int8_t ret;

 while ((ret = mqtt.connect()) != 0) {

 switch (ret) {

 case 1: Serial.println(F("Wrong protocol")); break;

 case 2: Serial.println(F("ID rejected")); break;

 case 3: Serial.println(F("Server unavail")); break;

 case 4: Serial.println(F("Bad user/pass")); break;

 case 5: Serial.println(F("Not authed")); break;

 case 6: Serial.println(F("Failed to subscribe")); break;

 default: Serial.println(F("Connection failed")); break;

 }

 if(ret >= 0)

54

 mqtt.disconnect();

 Serial.println(F("Retrying connection..."));

 delay(5000);

 }

 Serial.println(F("Adafruit IO Connected!"));

}

55

 Thank You

