STUDY OF NUCLEAR POWER PLANTS

SUBMITTED BY

MD. ARIF AHAMMAD MD. SAMIUL ISLAM MD. SIFAT ULLAH KHAN MIRAZUL HOQUE

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

SONARGAON UNIVERSITY (SU) DHAKA, BANGLADESH

September-2022

STUDY OF NUCLEAR POWER PLANTS

MD. ARIF AHAMMAD MD. SAMIUL ISLAM MD. SIFAT ULLAH KHAN MIRAZUL HOQUE

DEPARTMENT OF MECHANICAL ENGINEERING SONARGAON UNIVERSITY (SU) DHAKA, BANGLADESH

September-2022

STUDY OF NUCLEAR POWER PLANTS

MD. ARIF AHAMMAD, ID: BME 1901017556 MD. SAMIUL ISLAM. ID: BME 1901017248 MD. SIFAT ULLAH KHAN, ID: BME 1901017251 MIRAZUL HOQUE, ID: BME 1901017268 SESSION: 2019-2020

A Graduation Exercise Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Mechanical Engineering

> DEPARTMENT OF MECHANICAL ENGINEERING SONARGAON UNIVERSITY (SU) DHAKA, BANGLADESH

> > September-2022

CERTIFICATION OF APPROVAL

This is to certify that the B.Sc. in Mechanical Engineering thesis entitle "A Study On Nuclear Power Plant System" submitted by this group- Md. Arif Ahammad, BME: 1901017556, Md. Samiul Islam, BME 1901017248, Md. Sifat Ullah Khan, BME: 1901017251, Mirazul Hoque, BME: 1901017268. The thesis represents an independent and original work on the part of the candidates. The whole work of this thesis has been planned and carried out by this group under supervisor and guidance of the professor of Sonargaon University (SU), Dhaka, Bangladesh.

Countersigned

Md. Mostafa Hossain Professor Department of Mechanical Engineering Sonargaon University (SU)

DECLARATION

We do hereby solemnly declare that the work presented in this report has been carried out by us under the supervisor of professor Md. Mostofa Hossain Department of Mechanical Engineering in Sonargaon University (SU). We have tried our best to make the report with accurate with information and relevant data.

We further undertake to indemnify the university against any loss or damage arising from breach of the forgoing obligation.

Md. Arif Ahammad BME: 1901017556

Md. Samiul Islam BME 1901017248

Md. Sifat Ullah Khan BME: 1901017251

Mirazul Hoque BME: 1901017268

TABLE OF CONTENTS

Торіс	Page No
Certification Of Approval	i
Declaration	ii
Table of Contents	iii
Acknowledgment	V
Abstract	vi
List of Figure	vii
List of Table	vii
Chapter-1	01-13
Introduction	
1.1 Introduction	01
1.2 Background	02
1.3 Objectives	03
1.4 Methodology	04
1.5 Basic Block Diagram of Nuclear power plant	05
1.6 Terminology	06
1.7 Units and dimensions	06
1.8 Forces in the nucleus	07
1.9 Fission	09
1.9 .1Thermal and fast fission	10
1.9.2 Fission Chain Reaction	12
1.9.3 Fission énergies	12
1.9.4 Fission products	13
CHAPTER-2	14-19
OPERATION AND CONTROL OF NUCLEAR POWER	
PLANT	
2.1 Reactor details	14
2.2 Fission process	18
2.3 Heat Generation	19
2.4 Cooling	19
2.5 Reactivity Control	19
2.6 Nuclear Reactor/Energy Generation	19
2.6.1 Resources	19
2.6.2 Generalizing	19

CHAPTER-3 NUCLEAR POWER REACTORS	20-36
3.1 Basic Concept of Nuclear Power Reactors	20
3.2 Components of a nuclear reactor core	21
3.2.1 Fuel	21
3.2.2 Moderator	21
3.2.3 Control rods	22
3.2.4 Coolant	22
3.2.5 Pressure vessel or pressure tubes	23
3.2.6 Steam generator	23
3.2.7 Containment	24
3.2.8 Enrichment	24
3.3 Fuelling a nuclear power reactor	25
3.4 The power rating of a nuclear power reactor	25
3.5 Different Types of Reactor	26
3.5.1 Pressurized Water Reactor (PWR)	26
3.5.2 Boiling Water Reactor (BWR)	27
3.5.3 Pressurized Heavy Water Reactor (PHWR or CANDU)	28
3.5.3.1 Importance of Heavy Water	29
3.5.4 Advanced Gas-cooled Reactor (AGR)	30
3.5.5 Light water graphite-moderated reactor (RBMK)	30
3.5.6 Fast reactors	30
3.5.7 Thermal Reactors or Slow Neutron Reactors	31
3.6 Advanced reactors	31
3.7 Lifetime of nuclear reactors	31
3.8 Nuclear reactors for process heat	32
3.9 Comparison of different nuclear reactors	32
3.10 DISCUSSION	33
CONCLUSION	34
RECOMMENDATION	35
REFERENCES	36

ACKNOWLEDGMENT

The authors are grateful to the Allah to let the chance for accomplishing this research work. The authors would like to express cordial gratitude to their supervisor Professor Md. Mostofa Hossain, Department of Mechanical Engineering, Sonargaon University (SU) for his continuous guidance and support throughout the thesis work. The authors are deeply indebted to him for his constructive advice and encouraging words, which have always been a constant source of inspiration. Without his help and direction it might be quite impossible to reach a successful ending of the thesis.

We are also grateful to all of our teachers of the University for this co-operation and dedicated teaching for the achievement of the degree of (B.Sc.) in Mechanical Engineering. Co-operation and assistance of all the officers and staffs of Mechanical Engineering, Department of Sonargaon University, Bangladesh is healthfully acknowledged.

The Authors Md. Arif Ahammad Md. Sifat Ullah Khan Mirazul Hoque Md. Samiul Islam

ABSTRACT

Nuclear power plants can provide cheap electricity, with smaller amount of global problems than fossil-fueled power plants. In the future, as nuclear technology is moving forward, more advanced technologies will be available. These new technologies will bring nuclear power plants close to sustainable electricity generation. However, nuclear power is not the solution to cover the electricity demand in long term. Chapter one, important aspects of nuclear physics for nuclear plant technology are explained. In a fission process, as an atom splits to form two new atoms, it goes from more loosely bound nucleus to two more tightly bound nuclei. A chain reaction refers to a process in which neutrons released in fission produce a additional fissions in at least one further nucleus. Fission energies, fission products as waste explained here. The probabilities like fission, neutron capture or kinetic energy exchange between colliding parts (scattering) are defined as the cross section of a nucleus for that particular reaction. Radioactivity measurements, biological affects of radiation also explained here. Chapter two, the source-end of nuclear fuel cycle is introduced .Physics of operating a nuclear reactor is explained. Nuclear power reactor like Uranium-fuelled Reactor, Plutonium-fuelled Reactor, Light water (PWR) boiling water reactor (BWR) are explained here. Fission process from nuclear to thermal explained here. Heat generation, control facilities also explained. Chapter three, Current and future technologies are presented in third chapter with reasonable detail. Basic concept of power are reactors also explained here. Components of nuclear reactors, coolant system, different reactors with some reactors comparison has explained. Refueling of reactor also explained here. Advanced reactors also explained here in detail.

Figure	Page No
Figure 1.1: Stable and radioactive atoms (Krane, 1988)	08
Figure 1.2, curve of binding energy (Krane, 1988)	09
Figure 1.3: Distribution of fission products (Krane, 1988)	13
Fig 3.1: power rating of a nuclear power reactor.	26
Fig 3.2: Schematic Diagram of Pressurized Water Reactor	27
(PWR)	
Fig 3.3: Schematic Diagram of Boiling Water Reactor (BWR)	28
Fig3.4: Schematic Diagram of Pressurized Heavy Water	29
Reactors.	
Fig 3.5: Schematic Diagram of Advanced Gas-cooled Reactor	30
(AGR)	

LIST OF FIGURE

LIST OF TABLE

Table	Page No
Table 1.1: Threshold energies (Krane, 1988)	13