CONSTRUCTION AND DESIGN OF AUTOMATIC DUAL AXIS SOLAR TRACKER

SUBMITTED BY

SUPERVISED BY

Md. Mahbur Rahman

Md. Mostofa Hossain

Shah Paran

Departmental Head

Md. Sakil Hosen

Department of Mechanical Engineering

Md. Rokonuzzaman

Sonargaon University (SU)

Sk.Baha Uddin

We will rise up, we will shine, Sonargaon University, Dhaka
DEPARTMENT OF MECHANICAL ENGINEERING

This project report is submitted to the Department Of Mechanical Engineering, Sonargaon University, Dhaka for partial fulfillment of the requirements for the degree of Bachelor of Science In Mechanical Engineering.

DECLARATION

This is to clarify that the research study entitled, "Automatic Solar Tracker in Dual Axis" is carried out by some students below their name under my supervision in the **Department of Mechanical Engineering of Sonargaon University**. This above thesis work or any part of this work has not been submitted anywhere for that ward of any University.

Signature of the Students	Signature of the supervisor
Shah Paran	Supervised By
ID: BME1901017610	Md. Mostofa Hossain
	Departmental Head
Sk.Baha Uddin	Department of Mechanical Engineering
ID: BME1901017536	Sonargaon University (SU)
Md. Rokonuzzaman	
ID: BME1901017523	
Md. Sakil Hosen	
ID: BME1901017449	
Md. Mahbur Rahman	
ID: BME1901017570	

Dedicated to

Our Parents

ACKNOWLEDGEMENT

First of all, we give thanks to Allah or God. Then we would like to take this opportunity to express our appreciation and gratitude to our project and thesis supervisor Md. Mostafa Hossain, Professor, and Head of the Department of Mechanical Engineering of Sonargaon University for being dedicated to supporting, motivating, and guiding us through this project. This project can't be done without his useful advice and helps. Also thank you very much for giving us an opportunity to choose this project.

Apart from that, we would like to thank our entire friends for sharing knowledge; information and helping us in making this project a success. Also, thanks for lending us some tools and equipment.

To our beloved family, we want to give them our deepest love and gratitude for being very supportive and also for their inspiration and encouragement during our studies at this University.

ABSTRACT

Because of the high demand for green and sustainable energy, research on solar energy harvesting has become one of the most popular engineering research topics, particularly on renewable energy. Many research studies are devoted to the design and development of efficient and dependable solar power systems. Solar tracking and control have become one of the most important components of a solar power system for improving and optimizing the efficiency of solar energy absorption.

This project's goal is to evaluate the performance of a dual-axis solar tracking system. It is made up of three major structures: the inputs, the controller, and the output. The LDRS provides input, the Arduino serves as the controller, and the servo motor serves as the output.

The main controller in this project, the Arduino, receives analog input from LDRs and converts it to a digital signal using an analog-to-digital (A- D) converter. The controller then sends the signal to the servo motor to determine the position of the solar panel.

TABLE OF CONTENT

Top page		Ì
Declaration		ii
Dedicated		iii
Acknowledgn	Acknowledgment Abstract Table of Content	
Abstract		
Table of Con		
List of Figure	es	ix xi
List of Tables	;	
List of Abbreviations		xii
List of Symbo	ols	xiii
CHAPTER	01 INTRODUCTION	1-2
1.1	Background of Project	1
1.2	Objectives	1
1.3	Scopes	1
1.4	Problem statement	2
1.5	Methodology	
1.6	Project outline	2
CHAPTER	02 REVIEWS AND LITERATURE KNOWLEDGE	3-18
	OF ARDUINO AND SOLAR CELL	
2.1	Introduction	3
2.2	What is Arduino	3
2.3	Features of Arduino	3
2.4	Application of Arduino	4
2.5	Parts of Arduino	4
2.5.1	Central Processing Unit	5

2.5.2	Memory	5
2.5.3	Power Supply	5
2.6	Input control device	6
2.7	Description of the input control device	6
2.8	Output control device	10
2.9	Explanation of output control device	10
2.10	Solar Cell	13
2.10.1	Theoretical Framework	13
2.10.2	Electrical Application of Solar Energy	14
2.10.3	Types of Solar PV modules	18
CHAPTE	R 03 DESIGN AND CONSTRUCTION OF	
	AUTOMATIC SOLAR TRACKER DUAL AXIS	20-33
3.1	System implementation	20
3.2	Block diagram of Arduino Uno	20
3.3	Description of each block	20
3.3.1	Central processing unit	20
3.3.1.1	Component used in the central processing unit	20
3.3.2	Control unit	23
3.3.2.1	Component used in the control unit	23
3.3.3	Solar unit	28
3.3.3.1	Component use in solar unit	28
3.4	Hardware Design	32
3.5	Software implementation	33
3.6	Algorithm of solar tracking system	33
3.7	Program	33

CHAPTE	ER 04 RESULT AND DISCUSSION	37-40
4.1	Arduino interfacing	37
4.2	Project Overview	37
4.3	Result of this project	39
4.4	Cost Analysis	40
4.5	Feasibility Study	40
CHA DTE	ED 05 CONCLUSION AND DECOMMENDATION	41 42
CHAPTE	ER 05 CONCLUSION AND RECOMMENDATION	41-43
5.1	Conclusion	41
5.2	Limitation of the work	41
5.3	Future scope	41
5.4	Recommendation	42
	References	43

LIST OF FIGURES

Figure No.	Figure Caption	Page
2.1	Arduino Uno Block Diagram	4
2.2	Power supply	5
2.3	Light Dependent Resistor (LDR)	6
2.4	Pushbutton	7
2.5	Potentiometer	7
2.6	Temperature Sensor	8
2.7	Fingerprint Sensor	8
2.8	Smoke Sensor	9
2.9	Keypad	9
2.10	Sound detection sensor	10
2.11	Light emitting diode	11
2.12	Motor	11
2.13	Liquid Crystal Display	12
2.14	Relays	12
2.15	Seven-segment display	13
2.16	Speaker and buzzer	13
2.16	(a) single axis solar tracker	14
	(b) double-axis solar tracker	
2.18	Variation of the trajectory of sun from	14
	winter to summer	
2.19	Photoelectric effect in PV Cell	15
2.20	I-V curve of solar cells	16
2.21	Pictorial view of PV panel	17
2.22	Pictorial representation from the	18
	solar cell to solar array	

2.23	Types of solar cells	19
3.1	Block Diagram	20
3.2	Arduino Uno	21
3.3	Arduino Cable	21
3.4	Power Supply	22
3.6	Battery	23
3.7	Digital Amp Volt Meter	24
3.8	Capacitor	24
3.9	Diode	25
3.10	Resistor	25
3.11	Variable Resistor	26
3.12	Voltage Regulator IC	26
3.13	Timer IC	27
3.14	LED	27
3.15	Breadboard	28
3.16	Solar	29
3.17	LDR	30
3.18	Servo Motor	30
3.19	Plastic Sheet	31
3.20	Nut-Bolt	31
3.21	Connecting Wire	32
3.22	Blok diagram of solar tracking system	32
4.1	Interfacing Arduino Uno	37
4.2	Basement with servo motor	38
4.3	Solar Rotate Frame	38
4.3	Solar panel	38
4.5	Project Overview	39

LIST OF TABLES

Table	Table Caption	Page
4.1	Comparison of output values between	39
	the static solar panel and solar panel	
	with a tracking mechanism	
4.2	Price List	40

LIST OF ABBREVIATIONS

IDE Integrated Development Environment

LDR Light Dependent Resistor

USB Universal Serial Bus

PWM Pulse width modulation

MHz Megahertz

CPU Central Processing Unit

RAM Random Access Memory

ROM Read Only Memory

PROM Programmable Read Only Memory

EPROM Erasable PROM

EEPROM Electrically Erasable PRO

LED Light Emitting Diode

LCD Liquid Crystal Display

PDUs Power Distribution Units

USB Universal Serial Bus

AC Alternating Current

DC Direct Current

PV Photovoltaics

LIST OF SYMBOLS

 $\mu F \hspace{1cm} \text{Micro Farad}$

V Voltage

I Current

η Efficiency